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The existence and uniqueness of a T-periodic solution of the nonlinear differentialequa- 
tion 

d”z / dt” + f (1, T) = 0 (n >, 3) (1) 

is proved, and stability of the solutions of the equivalent system 

dz / dt = F (I, I) 

2 = (21, 2.2, . . .+ of&), F = (F,, F*, . * -9 F,), 21 = 2, Fi = %+I 
(i = 1, 2, l a -9 n - I), Fn = -f (t, ~1) 

(2) 

is studied. In what follows, E,, denotes an n-dimensional Euclidean space of elements 
z with the scalar product 

(z, h) = 5 z& (2, h f En, 11 2 1) = (2, zp) 
f=l 

The following theorem holds. 

Theorem 1. Let the function f (I, 2) satisfy the following conditions: 

1) f and a// C?X are continuous for all t, 3: E (-33, 06); 
2) a number T exists such that f (f -f- T. z) E j (t, z) for all t and z; 

3) the inequality Q < i?f / 6k $ b, where u and b are constants,holds for all I 
and x Then in each of the following cases: 

a\ n = 2k $ 3 (IS = 0, i, 2, . , .), nh > 0; 

b) R = 4k + 4 (k = 0, i, 2, , . _), a > 0, b > 0; 

c) R = 4k + 6 (k = 0, 1, 2, . . .), a < 0, b < 0 

the equation (1) has a unique T -periodic solution. 
Proof. From [l] it follows that the sufficient condition for a unique T -periodic 

solution of the system (2) to exist is, that the conditions 

(- (U [aF / az] + [NJ / k]‘U)h, h) >,I h 1 * 
(3) 

II F 0, 2) - F (I, h) 11 < L 11 z - h 11, 0 < L = const (4) 

hold for all I, 5 E (-CO, OO), z, h TV En. Here U is a symmetric reversible matrix with 
both positive and negative eigenvalues,and the matrix laF / az]’ is a transposition of 

dFl 8~ . The system (2) has no other restrictions, provided that the conditions (3) and 
(4) both hold. 

The condition (4) obviously follows from the inequality (3) of the theorem. We shall 

show that (3) automatically implies that the matrix U is reversible, as well as the fact 

that it has both positive and negative eigenvalues. Indeed, writing for any t,,, to aF (to, 

2”) / & = A, we have 
Ifill’< (-(UA+A’ll)k,h)d2llAII IIhII IIUhlI 
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therefore 1) Uh II> 11 h II/ (2 11 A I]). From here it follows that U is reversible. It is evi- 
dent that the matrix A = (aij) (i, i = 1, 2, . . . , n) has the form all1 = --p,, = -4j(t,,, 
zrO) ’ 321, aii+i = 1 (i = 1, 2 , . . ‘1 n - 11, with the remaining aij equal to zero, Z’ = 
(ZrO, zaO, . . *I %I”). 

According to the condition of the theorem we can either have p0 > 0 or p. < 0 only. 
Let p0 > 0. The eigenvalues of the matrix A can be obtained from the equationF + 

p,, = 0 *and are equal to 

n+2nk n+2nk 
n fisin n I 

(k=0,1,2 ,..., n-i) 

Let us assume that the spectrum of U is positive. Then condition (3) implies that 

Re& < 0 (k = 0, 1, . . ., 7~ - 1) (see [2]) and this is impossible since Rel,, > 0. As- 
sume now that the spectrum of U is negative. Condition (3) implies that Relk > 0. 
Indeed, if hk is the eigenvector of the matrix A corresponding to ik, then we have 

(- (UA + A’U)hk, hk) = (-UAhk, hk) + (-Uhk, Ahk) = 

II, (-Uhk, hk) +‘ck (--hc, hk) = @Relk)*(-- Uhk, hk) > // hk Ii ’ 

where & is a conjugate of &. Since (--ufLk, hk) > 0, we have 

2Re II, ,, I/ hk(12 / (--hk, h/J > 11 hk 11 2 / (11 u II 11 hk 11 ‘) = 1 / 11 u 11 

On the other hand, if an integer k is chosen so that l14n - iI2 < k < a/,n - rll, then 

cos (x + 2nk) / n < 0, which contradicts the condition that Re& > 0. The case p,, < 

0 is considered in the same manner. 

It follows therefore that the matrix U has both positive and negative eigenvalues. 
To complete the proof of the theorem it remains to show that the matrix U satisfies 

the condition (3) which implies the nonnegative definiteness of the matrix B = (bii) (i, 

i) = (1, . . ., n) of the form 

b,, = 2pq, - 1, bii = --2Ui_,i - 1 

(i = 2, 3, . . ., R), b,j = PlLjn - Ulj_1 (i = 2, 37 * . .Y n) 
bij = - (u~~_~ $- LL~_~~) (i = 2, 3, . . ., n - 1; j = i $ 1, i -b 2, . ., n) 

where p = aj (t, zl) / 3z1, uij (i, i = 1, . . . , n) are the elements of the matrix U, and 

uii = Uij. 

We shall consider the cases (a), (b) and (c) separately. In the case (a) we set z+_,~ = 

-l(i = 2, 3, . . ., n), Uij_l + Ui_lj = 0 (i = 2, 3, . . .,?Z - 1; i = i + 1, i + 2. 

. . .) n), uln = u. The successive principal diagonal minors Tk (k = 1, 2, . . ., 7~) of 
the resulting matrix B will have the form 

rk = 2Pu + akp2 + bkp + ck (k = 1, 2, . . ., n) 

where ak, bk and ck are pure numbers. If a > 0 and b > 0, then choosing u > 0 suf- 
ficiently large we obtain rk > 0. If a < 0 and b < 0, then taking u < 0 sufficiently 

large in modulo we obtain once again rk > 0. This, together with the Sylvester criterion, 
yields the positive definiteness of the matrix B. 

In the case (b) we take ui_ri = -1 (i = 2, 3, . . ., n / 2, n / 2 $ 2, . . .,n), uij_1 f 

‘i-lj = 0 (i = 2, 3 , . * .I n -1) (j = i +i, . . ., n), qn = u. Then un,s n,s+1 = - u 
and the successive principal diagonal minors of the matrix B will have the form 
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I 
~PU + arp2 + b,p + ck (k=l,2,...,n/2) 

I’, = 
4puz + i (ahip -t_ bkiP + cri) u2-’ (k=n/2+l,...,n) 

i=l 

where ak, bk, Ck, akt, bkt* ckt are Certain numbers. Choosing u > 0 sufficiently large, 
we obtain rk > 0 and this ensures the positive definiteness of the matrix B. 

In the case (c) we impose on the elements of the matrix U the restrictions usedinthe 

case(b) to obtain 

unj2 n/2-/-1 = u 

(2PU + akP2 + bkP + Ck (k I= 1,2, . . ., u/2) 

rk= - 4PU2 f ~ (QkiP2 + bk,P + ‘ki) U2ci (k=n/2+i,...,n) 
i=1 

where ak, bk, Ck, akl, bki, Ckt are certain numbers. Taking u < 0 sufficiently 
modulo, we obtain rk > 0. This completes the proof of the theorem. 

large in 

Note. Inthecases n=4kf4, a<O, b<Oand n=4kf6, a>O, b>O 

(k -0, 1, 2, . . .) , Theorem 1 is not valid. Indeed, the equations 

Cr”+lx / dt4ktr - (2~ / T)ak+‘z = 0 

d’k+% / dt4k+” + (2x I T)Pk+% = 0 

have infinitely man) T -;>eriodic solution. 
Since under the conditions of Theorem 1 all requirements of Theorem II of [3] are 

satisfied for the system (2), the following corollary holds : 
Corollary. Let z” (t) be a unique T -periodic solution of the system (2). Then 

manifolds M1 and M, exist in the space E, intersecting at the point I” (0) only, and 
are such that the following relations hold for the solutions z (t) of the system (2) : 

112 (t) - 2’ (t) 11 < iVe-m*ll z (0) - 8 (0) [I, ii t >, 0 and .Z (0) E M, (5) 

11~ (1) - z” (1) jl Q Nen*t II z (0) - z” (0) 11, if 1 Q 0 and z (0) E M, 

Oz (t) - z” (t) 11 >, Kemt, if t > t, and z (0) z ;M, U M, 

where N > 0. K > 0, m > 0 and t, are constants. 
Thus the unique T -periodic solution of the system (2) which is Liapunov unstable, is 

conditionally asymptotically stable to the right (left) of the maniford M, (M,). More- 

over, a nonlinear exponential dichotomy of solutions (see [3]) exists for the system (2). 

Theorem 2. Let the following conditions hold for t, z E (-00, 00). 
1) the function f (t, 2) is continuous together with its derivative a/ / a~ , and 

T -pe&odic in t; 
2) f (f, 0) E 0. 

Then the zero solution of the system (2) is unstable in each of the following cases: 

a) n = 2k f 3 (k = 0, I, 2, . . .), a/ (1, 0) / & =# 0; 

b) n = 4k f 4 (Is = 0, I, 2, . . .), a/ (I, 0) / & > 0; 

c) n = 4lc + 6 (k = 0, 1, 2, . . .), 3.f (t. 0) / az < 0 

Pro o f . Consider the following variational equation for the zero solution of the SyStem 

(2): d,_ / dt = (al; (t, 0) / adz (6) 

AU conditions of Theorem 1 hold for (6), therefore the last estimate of (5) which implies 
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the positive definiteness of the characteristic Liapunov index of the solution z ct) of(6), 
holds. As we know (see, e. g. [4]), the zero solution of the system (2) will in this case be 

unstable, and this proves the theorem. 
Equation (1) was considered for n 2 3. When n. = 2 , conditions (1) - (3) of Theorem 

1 and the condition a < 0, h < 0 ensure the existence of a unique 3’ -periodic solution 

of Eq. (1) and a nonlinear exponential dichotomy of the solutions of the system (2). A 

second order equation however, which is more general than (l), was studied in [1] . 
When n = 1 , the conditions (l),(2) of Theorem 1 and the conditions 

af (t, I) / ax > a > 0 (7) 

af (t, 2) / tkx < b < 0 (3) 

together ensure the existence of a unique T-periodic solution of Eq. (1). This solution is 

stable in the whole, and Eq. (1) represents a particular case of a monotonous differential 
equation studied in [Z]. 

The author thanks A. I. Perov for the interest shown. 
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